Usable y accesible
Olga Carreras

Técnicas WCAG 2.0 asociadas a la implementación de formularios accesibles

Autor: Olga Carreras

Fecha: 1 de junio de 2009

Este documento forma parte del artículo: “Formularios accesibles según las WCAG 2.0” del blog Usable y accesible.
Las técnicas de las WCAG 2.0 están organizadas temáticamente, pero por desgracia, la documentación de las WCAG 2.0 no incluye un índice de las técnicas referentes a formularios, a enlaces, etc.

Por ello he recopilado las técnicas relacionadas con los formularios. A continuación incluyo estas 47 técnicas indicando: su título, su enlace, su descripción y su procedimiento de validación.

Para consultar de forma cómoda los criterios de éxito y nivel de cumplimiento (A,AA,AAA) asociados a cada una, su tipo (“sufficient” o “advisory”) o sus reglas de aplicación consultar el documento: “Checklist para validar formularios de acuerdo a las WCAG 2.0”

Índice de contenido

G5: Allowing users to complete an activity without any time limit
6

Description
6

Procedure
6

G13: Describing what will happen before a change to a form control that causes a change of context to occur is made
7

Description
7

Procedure
7

G80: Providing a submit button to initiate a change of context
8

Description
8

Procedure
8

G83: Providing text descriptions to identify required fields that were not completed
9

Description
9

Procedure
9

G84: Providing a text description when the user provides information that is not in the list of allowed values
10

Description
10

Procedure
10

G85: Providing a text description when user input falls outside the required format or values
11

Description
11

Procedure
11

G89: Providing expected data format and example
12

Description
12

Procedure
12

G98: Providing the ability for the user to review and correct answers before submitting
13

Description
13

Procedure
13

G99: Providing the ability to recover deleted information
14

Description
14

Procedure
14

G133: Providing a checkbox on the first page of a multipart form that allows users to ask for longer session time limit or no session time limit
15

Description
15

Procedure
15

G139: Creating a mechanism that allows users to jump to errors
16

Description
16

Procedure
16

G149: Using user interface components that are highlighted by the user agent when they receive focus
17

Description
17

Procedure
17

G155: Providing a checkbox in addition to a submit button
18

Description
18

Procedure
18

G162: Positioning labels to maximize predictability of relationships
19

Description
19

Procedure
20

G164: Providing a stated period of time after submission of the form when the order can be updated or canceled by the user
21

Description
21

Procedure
21

G167: Using an adjacent button to label the purpose of a field
22

Description
22

Procedure
22

G168: Requesting confirmation to continue with selected action
23

Description
23

Procedure
23

G177: Providing suggested correction text
24

Description
24

Procedure
24

G184: Providing text instructions at the beginning of a form or set of fields that describes the necessary input
25

Description
25

Procedure
25

G194: Providing spell checking and suggestions for text input
26

Description
26

Procedure
26

G197: Using labels, names, and text alternatives consistently for content that has the same functionality
27

Description
27

Procedure
27

G198: Providing a way for the user to turn the time limit off
28

Description
28

Procedure
28

G199: Providing success feedback when data is submitted successfully
29

Description
29

Procedure
29

H4: Creating a logical tab order through links, form controls, and objects
30

Description
30

Procedure
30

H32: Providing submit buttons
31

Description
31

Procedure
31

H44: Using label elements to associate text labels with form controls
32

Description
32

Procedure
32

Expected Results
33

H65: Using the title attribute to identify form controls when the label element cannot be used
34

Description
34

Procedure
34

H71: Providing a description for groups of form controls using fieldset and legend elements
35

Description
35

Procedure
36

H84: Using a button with a select element to perform an action
37

Description
37

Procedure
37

H85: Using OPTGROUP to group OPTION elements inside a SELECT
38

Description
38

Procedure
39

H89: Using the title attribute to provide context-sensitive help
40

Description
40

Procedure
40

H90: Indicating required form controls
41

Description
41

Procedure
41

H91: Using HTML form controls and links
42

Description
42

Procedure
42

SCR2: Using redundant keyboard and mouse event handlers
43

Description
43

Procedure
43

SCR18: Providing client-side validation and alert
45

Description
45

Procedure
45

SCR19: Using an onchange event on a select element without causing a change of context
46

Description
46

Procedure
46

SCR20: Using both keyboard and other device-specific functions
47

Description
47

Procedure
47

SCR32: Providing client-side validation and adding error text via the DOM
48

Description
48

Procedure
49

SCR35: Making actions keyboard accessible by using the onclick event of anchors and buttons
50

Description
50

Procedure
50

F9: Failure of Success Criterion 3.2.5 due to changing the context when the user removes focus from a form element
52

Description
52

Procedure
52

F36: Failure of Success Criterion 3.2.2 due to automatically submitting a form and presenting new content without prior warning when the last field in the form is given a value
53

Description
53

Procedure
53

F81: Failure of Success Criterion 1.4.1 due to identifying required or error fields using color differences only
54

Description
54

Procedure
54

F86: Failure of Success Criterion 4.1.2 due to not providing names for each part of a multi-part form field, such as a US telephone number
55

Description
55

Procedure
55

Expected Results
55

C17: Scaling form elements which contain text
57

Description
57

Procedure
57

ARIA2: Identifying required fields with the "required" property
58

Description
58

Procedure
58

ARIA3: Identifying valid range information with the "valuemin" and "valuemax" properties
60

Description
60

Procedure
61

ARIA4: Using Accessible Rich Internet Applications to programmatically identify form fields as required
62

Description
62

Procedure
62

G5: Allowing users to complete an activity without any time limit

http://www.w3.org/TR/WCAG20-TECHS/G5.html
Description

The objective of this technique is to provide users with all the time they need to complete an activity. This technique involves providing a specified activity which does not require timed interaction. Users are allowed as much time as they need to interact with the activity.

Procedure

1. Determine if any timed interactions are present.

G13: Describing what will happen before a change to a form control that causes a change of context to occur is made

http://www.w3.org/TR/WCAG20-TECHS/G13.html
Description

The objective of this technique is to provide information to users about what will happen when a change to a form control results in a change of context. Because changing the value of a form control does not typically result in a change of context, it is important that authors provide instructions that make the user aware of the behavior in advance. Where possible, it is a good idea to programmatically associate the instructions describing the change with the form control itself.

The following are some examples of how to provide the instruction in different situations.

· Provide instruction on the Web page with reading order that precedes the user interface element that causes change of context by change of setting.

· For a multi-step process where users must complete particular steps in order to reach the user interface element where changes of setting would cause a change of context, provide the instruction as part of the process prior to the step where they would encounter the change of context.

· In the case of an intranet where user training is required prior to the use of a Web application where user interface elements that cause changes of context when settings are changed, instruction is provided as part of the training.

Procedure

· Locate content where changing the setting of a form control results in a change of context

· Check to see that an explanation of what will happen when the control is changed is available prior to the controls activation

G80: Providing a submit button to initiate a change of context

http://www.w3.org/TR/WCAG20-TECHS/G80.html
Description

The objective of this technique is to provide a mechanism that allows users to explicitly request changes of context. Since the intended use of a submit button is to generate an HTTP request that submits data entered in a form, this is an appropriate control to use for causing a change of context and is a practice that does not create confusion for users.

Procedure

1. Find all forms in the content

2. For each form, check that it has a submit button

G83: Providing text descriptions to identify required fields that were not completed

http://www.w3.org/TR/WCAG20-TECHS/G83.html
Description

The objective of this technique is to notify the user when a field that must be completed has not been completed. When users fail to provide input for any mandatory form fields, information is provided in text to enable the users to identify which fields were omitted. One approach is to use client-side validation and provide an alert dialog box identifying the mandatory fields which were omitted. Another approach, using server-side validation, is to re-display the form (including any previously entered data), with either a text description at the location of the omitted mandatory field, or a text description that identifies the omitted mandatory fields.

Procedure

1. Fill out a form, deliberately leaving one or more required (mandatory) fields blank, and submit it.

2. Check that a text description is provided identifying the mandatory field(s) that was not completed.

G84: Providing a text description when the user provides information that is not in the list of allowed values

http://www.w3.org/TR/WCAG20-TECHS/G84.html
Description

When users enter input that is validated, and errors are detected, the nature of the error needs to described to the user in manner they can access. One approach is to present an alert dialog that describes fields with errors when the user attempts to submit the form. Another approach, if validation is done by the server, is to return the form (with the user's data still in the fields) and a text description at the top of the page that indicates the fact that there was a validation problem, describes the nature of the problem, and provides ways to locate the field(s) with a problem easily. The "in text" portion of the Success Criterion underscores that it is not sufficient simply to indicate that a field has an error by putting an asterisk on its label or turning the label red. A text description of the problem should be provided.

When input must be one of a set of allowed values, the text description should indicate this fact. It should include the list of values if possible, or suggest the allowed value that is most similar to the entered value.

Procedure

1. Enter invalid data in a form field.

2. Check that information is provided in text about the problem.

G85: Providing a text description when user input falls outside the required format or values

http://www.w3.org/TR/WCAG20-TECHS/G85.html
Description

The objective of this technique is to provide assistance in correcting input errors where the information supplied by the user is not accepted . When users enter data input that is validated, and input errors are detected, information about the nature and location of the input error is provided in text to enable the users to identify the problem. One approach is to use client-side validation and provide an alert dialog box that describes the error immediately when users enter invalid data in field. Another approach, using server-side validation, is to re-display the form (including any previously entered data), and a text description at the top of the page that indicates the fact that there was an error , describes the nature of the problem, and provides ways to easily locate the field(s) with a problem.

However the text description is provided, it should do one of the following things to assist the user:

· Provide examples of the correct data entry for the field,

· Describe the correct data entry for the field,

· Show values of the correct data entry that are similar to the user's data entry, with instructions to the user as to how to enter one of these correct values should the user choose to do so.

Procedure

1. Fill out a form, deliberately enter user input that falls outside the required format or values

2. Check that a text description is provided that identifies the field in error and provides some information about the nature of the invalid entry and how to fix it.

G89: Providing expected data format and example

http://www.w3.org/TR/WCAG20-TECHS/G89.html
Description

The objective of this technique is to help the user avoid input errors by informing them about restrictions on the format of data that they must enter. This can be done by describing characteristics of the format or providing a sample of the format the data should have.

Note: For data formats with common variations, such as dates and times, it may be useful to provide a preference option so users can use the format that is most comfortable to them.

Example Code:
<label for="date">Date (dd-mm-yyyy)</label>

<input type="text" name="date" id="date" />

Procedure

1. Identify form controls that will only accept user input data in a given format.

2. Determine if each of the form controls identified in 1 provides information about the expected format.

G98: Providing the ability for the user to review and correct answers before submitting

http://www.w3.org/TR/WCAG20-TECHS/G98.html
Description

The objective of this technique is to provide users with a way to ensure their input is correct before completing an irreversible transaction. Testing, financial, and legal applications permit transactions to occur which cannot be "undone". It is therefore important that there be no errors in the data submission, as the user will not have the opportunity to correct the error once the transaction has been committed.

On a simple, 1-page form this is easy because the user can review the form before submitting. On a form that spans multiple Web pages, however, data is collected from the user in multiple steps before the transaction is committed. The user may not recall all of the data that was entered in previous steps before the step which commits the transaction.

One approach is to cache the results of each individual step and allow the user to navigate back and forth at will to review all data entered. Another approach is to provide a summary of all data collected in all steps for the user to review prior to the final commitment of the transaction.

Before the final step that commits the transaction to occur, instructions are provided to prompt the user to review the data entered and confirm. Once the user confirms, the transaction is completed.

Procedure

In a testing application or one that causes financial or legal transactions to occur and that also collects data from users in multiple steps:

1. Determine if the user is allowed to return to previous steps to review and change data.

2. Determine if a summary of all data input by the user is provided before the transaction is committed and a method is provided to correct errors if necessary.

G99: Providing the ability to recover deleted information

http://www.w3.org/TR/WCAG20-TECHS/G99.html
Description

When a Web application provides the capability of deleting information, the server can provide a means to recover information that was deleted in error by a user. One approach is to delay deleting the data by merely marking it for deletion or moving it to a holding area (such as a trash can) and waiting some period of time before actually deleting it. During this time period, the user can request that the data be restored or can retrieve it from the holding area. Another approach is to record all delete transactions in such a way that data can be restored if requested by the user, such as in the edit history stored by wikis and source control applications.The retrievable information that is stored should be that which would be needed to correct the transaction.

Procedure

1. Identify functionality that allows deleting content

2. Delete content and attempt to recover it.

3. Check if deleted information can be recovered.

G133: Providing a checkbox on the first page of a multipart form that allows users to ask for longer session time limit or no session time limit

http://www.w3.org/TR/WCAG20-TECHS/G133.html
Description

The objective of this technique is to minimize the risk that users with disabilities will lose their work by providing a checkbox to request additional time to complete multipart forms. The checkbox can allow the user to request a specific amount of additional time (for example 15 minutes) or an indefinite extension. (Note that allowing an indefinite extension would be inappropriate if it jeopardized user privacy or network security.)

Procedure

If the Web page contains the first part of a multipart form:

1. Check that the Web page includes a checkbox to request additional time to complete the form.

2. Check that if the checkbox is checked, additional time is provided to complete the form.

G139: Creating a mechanism that allows users to jump to errors

http://www.w3.org/TR/WCAG20-TECHS/G139.html
Description

The objective of this technique is to help users find input errors where the information supplied by the user is not accepted. This includes fields with missing required information and fields with incorrect information. When users enter data input that is checked, and input errors are detected, a link to that error is provided so that the user does not have to search for it. One approach is to use server-side validation, and to re-display the form (including any previously entered data), and a text description at the top of the page that indicates the fact that there was an input error, describes the nature of the problem, and provides a link the field(s) with a problem.

Procedure

1. Fill out a form, deliberately leaving a required (mandatory) field blank, and make an input error on another field and submit the form.

2. Check that a text message is provided that identifies the field that is missing required data.

3. Check that a text message is provided that identifies the field with the input error.

4. Check that there is a link to each field that has is missing required data from the missing data message

5. Check that there is a link to the list of errors from the error message.

Note: Success Criterion 3.3.2 requires that if an input error is detected and suggestions for correction are known and can be provided without jeopardizing the security or purpose of the content, the suggestions are provided to the user.

G149: Using user interface components that are highlighted by the user agent when they receive focus

http://www.w3.org/TR/WCAG20-TECHS/G149.html
Description

The objective of this technique is to ensure that the focused component can be visually identified by the user by relying on user agent support. It is common for user agents to highlight standard controls in some way when they receive focus. UAAG-conformant user agents do so when they satisfy checkpoint 10.2 "Highlight selection, content focus, enabled elements, visited links". When authors use standard controls for which the user agent provides this support, users are informed of the focus location in a standard, predictable way.

Procedure

For each focusable component in the Web page:

1. Set focus to the control

2. Check whether the user agent has highlighted the control in some way

G155: Providing a checkbox in addition to a submit button

http://www.w3.org/TR/WCAG20-TECHS/G155.html
Description

The objective of this technique is to provide a checkbox that users must select to indicate they have reviewed their input and are ready for it to be committed. This is important when the nature of the transaction is such that it may not be reversible if input errors are subsequently discovered or when the result of an action is that data is deleted. The author provides a checkbox that is not selected when the page loads, with a label like "I confirm that the input is correct and am ready to submit" or "I confirm that I wish to delete this data". The checkbox should be located near the submit button to help the user notice it during the submission process. If the checkbox is not selected when the form is submitted, the input is rejected and the user is prompted to review their entry, select the checkbox, and resubmit. Only if the checkbox is selected will the input be accepted and the transaction processed.

This checkbox helps to guard against the consequences of an accidental form submission, and also serves to prompt the user to be sure they have entered accurate data. This is more secure than simply putting a label on the submit button like "input is correct, submit". Providing the checkbox as a separate control from the submit button forces the user to "double-check", as they must both select the checkbox and activate the submit button for the transaction to proceed. As such, this is a mechanism for reviewing, confirming, and correcting information before finalizing the submission.

Note: When users submit information without selecting the checkbox, they should not lose the information that they have entered when they return to the form to resubmit.

Procedure

For user input pages that cause irreversible transactions to occur:

1. Check that a checkbox indicating user confirmation of the input or action is provided in addition to the submit button.

2. Check that if the checkbox is not selected when the form is submitted, the input is rejected and the user is prompted to review their entry, select the checkbox, and resubmit.

G162: Positioning labels to maximize predictability of relationships

http://www.w3.org/TR/WCAG20-TECHS/G162.html
Description

When labels for form fields are positioned where the user expects them visually, it is easier to understand complex forms and to locate specific fields. Labels for most fields are positioned immediately before the field, that is, for left-to-right languages, either to the left of the field or above it, and for right-to-left languages, to the right of the field or above it. Labels for radio buttons and checkboxes are positioned after the field.

These positions are defined because that is the usual (and therefore most predictable) position for the label for fields, radiobuttons and checkboxes.

Labels are positioned before input fields since the fields sometimes vary in length. Positioning them before allows the labels to line up. It also makes labels easier to locate with a screen magnifier since they are immediately before the field and also can be found in a vertical column (when the start of the fields line up vertically). Finally, if the field has data in it, it is easier to understand or check the data if one reads the label first and then the content rather than the other way around.

Checkboxes and radio buttons have a uniform width while their labels often do not. Having the radio button or checkbox first therefore allows both the buttons and the labels to line up vertically.

Example 1: Labels above text fields

[image: image1.png]Date of Birth:

Country of origin:

Example 2: Labels to the left of text fields

[image: image2.png]Date of Birth:

Country of origin:

Example 3: Labels to the right of radio buttons

[image: image3.png]O Male O Female

Procedure

For each form field on the Web page:

1. Check that the form field has a visible label.

2. If the form field is a checkbox or radio button, check that the label is immediately after the field.

3. If the form field is not a checkbox or radio button, check that the label is immediately before the field.

G164: Providing a stated period of time after submission of the form when the order can be updated or canceled by the user

http://www.w3.org/TR/WCAG20-TECHS/G164.html
Description

The objective of this technique is to allow users to recover from errors made when placing an order by providing them with a period of time during which they can cancel or change the order. In general, a contract or an order is a legal commitment and cannot be canceled. However, a Web site may choose to offer this capability, and it provides a way for users to recover from errors.

The Web content would need to tell the user how long the cancellation period is after submitting the form and what the procedure would be to cancel the order. The cancellation procedure may not be possible online. It may, for instance, require written notice be sent to a address listed on the Web page.

Procedure

1. Check that the Web page describes the time period to cancel or change an order.

2. Check that the Web page describes the process for canceling or changing an order.

G167: Using an adjacent button to label the purpose of a field

http://www.w3.org/TR/WCAG20-TECHS/G167.html
Description

When a button invokes a function on an input field, has a clear text label, and is rendered adjacent to the input field, the button also acts as a label for the input field. This label helps users understand the purpose of the field without introducing repetitive text on the Web page. Buttons that label single text fields typically follow the input field.

Note: The field must also have a programmatically determined name, per Success Criterion 4.1.2.

Example 1: A search function

A Web page contains a text field where the user can enter search terms and a button labeled "Search" for performing the search. The button is positioned right after the text field so that it is clear to the user that the text field where to enter the search term.

[image: image4.jpg]SEARCH

Example 2: Picking a form

A user in the United States must fill in a form. Since the laws and requirements are different in different states within the United States, the user must select the version of a form for his state of residence. A dropdown list allows the user to pick a state. The adjacent button is labeled "Get Form for State." Pressing the button takes the user to the Web page containing the form for the selected state.

Procedure

For a field and a button using this technique:

1. Check that the field and button are adjacent to one another in the programmatically determined reading sequence.

2. Check that the field and button are rendered adjacent to one another.

G168: Requesting confirmation to continue with selected action

http://www.w3.org/TR/WCAG20-TECHS/G168.html
Description

This technique is to seek confirmation from the user that the selected action is his or her intended action. Use this technique in situations where the action can not be undone after it has been followed through. This will help users avoid submitting a form or deleting data by mistake.

For example, this may occur when the user expects the 'submit' and 'cancel' buttons to occur in an order contrary to what is provided and selects a button too quickly to notice the unexpected order. Presenting the user with a confirmation request allows the user to recognize the error and either stop the submission of data or stop the loss of entered data.

The request for confirmation should inform the user of the action that was selected and the consequences of continuing with the action.

Procedure

1. Initiate the action that can not be reversed or changed.

2. Check that a request to confirm the selected action is presented.

3. Check that the action can be confirmed and canceled.

G177: Providing suggested correction text

http://www.w3.org/TR/WCAG20-TECHS/G177.html
Description

The objective of this technique is to suggest correct text where the information supplied by the user is not accepted and possible correct text is known. The suggestions may include correct spelling or similar text from a known pool of possible text.

Depending on the form, suggestions could be located next to the field where the error was identified, elsewhere on the page or via a search mechanism or reference where results would be listed on another URI. Where possible, suggestions for correction should be incorporated in a way that is easy for the user. For example, an incorrect submission may return a list of possible corrections where the user can select a checkbox or radio button to indicate which option was intended. Suggestions or links to the suggestions should be placed close to the form fields they are associated with, such as at the top of the form, preceding the form fields, or next to the form fields requiring correction.

Procedure

1. Identify form fields where correct text could be inferred from incorrect text.

2. Fill out the form, deliberately filling in the identified form fields with incorrect text.

3. Check that the user is presented with suggestions for the correct text.

4. Check that the suggestions are provided next to the form field or a link to the suggestions is provided close to the form field.

G184: Providing text instructions at the beginning of a form or set of fields that describes the necessary input

http://www.w3.org/TR/WCAG20-TECHS/G184.html
Description

The objective of this technique is to help the user avoid input errors by informing them ahead of time about restrictions on the format of data that they must enter. Instructions on such restrictions are provided at the top of forms. This technique works best for forms that have a small number of fields or those where many form fields require data in the same format. In these cases, it is more efficient to describe the format once in instructions at the top of the form rather than repeating the same information for each field that has the same restricted format requirement.

Procedure

1. Identify form controls that will only accept user input data in a given format.

2. Determine if instructions are provided at the top of the form about the expected format each of the form controls identified in 1.

G194: Providing spell checking and suggestions for text input

http://www.w3.org/TR/WCAG20-TECHS/G194.html
Description

In this technique spell checking and suggestions for text are provided. Often people with cognitive disabilities have trouble spelling a word, but may be able to get the spelling approximately correct. A spell checking program will save them time-consuming research on how to spell the word. This may also be true for blind and low vision users who might make a mistake when typing. It will also help people with dexterity disabilities who may be using a head pointer, or who may have scanning software which makes it very slow and difficult to type. A spell-checking solution that provides word suggestion(s) and a simple mechanism to select one and input it into the text input field provides important help for these users and others.

Procedure

1. Check that there is a form field on the page.

2. Enter a misspelled word.

3. Check that a suggested spelling is presented.

4. Check that a mechanism is available to enter the suggested word into the form.

G197: Using labels, names, and text alternatives consistently for content that has the same functionality

http://www.w3.org/TR/WCAG20-TECHS/G197.html
Description

The purpose of this technique is to help for users with cognitive disabilities, blindness and vision loss to understand what will happen when they interact with a function on a Web page. If there are different labels on user interface components (i.e., elements, links, JavaScript objects, etc.) that have the same function, the user will not know that they have encountered a component with the same function and will not know what to expect. This could lead to many unnecessary errors. It is also recommended that this approach to consistent labelling be applied across the Web site.

Procedure

1. Check that each component is associated with text that identifies it (i.e., label, name, or text alternative).

2. Check that this associated text is identical for each user interface component with the same function.

G198: Providing a way for the user to turn the time limit off

http://www.w3.org/TR/WCAG20-TECHS/G198.html
Description

The objective of this technique is to provide a mechanism for people who cannot complete tasks within a specified time limit to turn off the time limit.

It is essential that the mechanism for turning off the time limit can be completed without a time limit itself and before the time limit for the page expires. To do this - the mechanism should be available at or near the top of the page so that it can be found and activated quickly by people with a wide range of disabilities.

Procedure

1. Check that there is a mechanism to turn off any time limits near the top of the page.

2. Verify that the time limit for the page is long enough that a user can easily navigate to the mechanism even if they are 10 times slower than most users.

G199: Providing success feedback when data is submitted successfully

http://www.w3.org/TR/WCAG20-TECHS/G199.html
Description

The objective of this technique is to reduce the effort required for users to confirm that an action, such as submitting a Web form, was completed successfully. This can be accomplished by providing consistently presented feedback that explicitly indicates success of an action, rather than requiring a user to navigate through content to discover if the action was successful.

Significant effort can be expended by users who can not easily scan through information to confirm their action (such as that data submitted has been successfully entered into a database, sent to a person, or added to content being edited).

Procedure

1. Fill in form fields with no errors.

2. Submit the form.

3. Check that a feedback message on the screen confirms that the submission was successful.

H4: Creating a logical tab order through links, form controls, and objects

http://www.w3.org/TR/WCAG20-TECHS/H4.html
Description

The objective of this technique is to provide a logical tab order when the default tab order does not suffice. Often, G59: Placing the interactive elements in an order that follows sequences and relationships within the content is sufficient and this technique is not necessary. It can be very easy to introduce usability bugs when setting the tab order explicitly.

In some cases, the author may want to specify a tab order that follows relationships in the content without following the order of the interactive elements in the code. In these cases, an alternative order can be specified using the tabindex attribute of the interactive element. The tabindex is given a value between 0 and 32767.

When the interactive elements are navigated using the tab key, the elements are given focus in increasing order of the value of their tabindex attribute. Elements that have a tabindex value higher than zero will receive focus before elements without a tabindex or a tabindex of 0. After all of the elements with a tabindex higher than 0 have received focus, the rest of the interactive elements are given focus in the order in which they appear in the Web page.

Procedure

1. Check if tabindex is used

2. If tabindex is used, check that the tab order specified by the tabindex attributes follows relationships in the content.

H32: Providing submit buttons

http://www.w3.org/TR/WCAG20-TECHS/H32.html
Description

The objective of this technique is to provide a mechanism that allows users to explicitly request changes of context. The intended use of a submit button is to generate an HTTP request that submits data entered in a form, so it is an appropriate control to use for causing a change of context.

Procedure

1. Find all forms in the content

2. For each form, check that it has a submit button (input type="submit", input type="image", or button type="submit")

H44: Using label elements to associate text labels with form controls

http://www.w3.org/TR/WCAG20-TECHS/H44.html
Description

The objective of this technique is to use the label element to explicitly associate a form control with a label. A label is attached to a specific form control through the use of the for attribute. The value of the for attribute must be the same as the value of the id attribute of the form control.

The id attribute may have the same value as the name attribute, but both must be provided, and the id must be unique in the Web page.

This technique is sufficient for Success Criteria 1.1.1, 1.3.1 and 4.1.2 whether or not the label element is visible. That is, it may be hidden using CSS. However, for Success Criterion 3.3.2, the label element must be visible since it provides assistance to all users who need help understanding the purpose of the field.

Note that the label is positioned after input elements of type="checkbox" and type="radio".

Note 1: Elements that use explicitly associated labels are: text,checkbox,radio,file,password,textarea,select

Note 2: The label element is not used for the following because labels for these elements are provided via the value attribute (for Submit and Reset buttons), the alt attribute (for image buttons), or element content itself (button): submit,reset,image,hidden,button

Example Code:

<label for="firstname">First name:</label>

<input type="text" name="firstname" id="firstname" />

Procedure

For all input elements of type text, file or password, for all textareas and for all select elements in the Web page:

1. Check that there is a label element that identifies the purpose of the control before the input element

2. Check that the for attribute of the label element matches the id of the input element

3. Check that the label element is visible.

For all input elements of type checkbox or radio in the Web page::

1. Check that there is a label element that identifies the purpose of the control after the input element

2. Check that the for attribute of the label element matches the id of the input element

3. Check that the label element is visible.

Expected Results

· Checks #1 and #2 are true. For Success Criterion 3.3.2, Check #3 is also true.

H65: Using the title attribute to identify form controls when the label element cannot be used

http://www.w3.org/TR/WCAG20-TECHS/H65.html
Description

The objective of this technique is to use the title attribute to label form controls when the visual design cannot accommodate the label (for example, if there is no text on the screen that can be identified as a label) or where it might be confusing to display a label. User agents, including assistive technology, can speak the title attribute.

Example Code:

<label for="searchTerm">Search for:</label>

<input id="searchTerm" type="text" size="30" value="" name="searchTerm">

<select title="Search in" id="scope">

…

</select>

Procedure

1. Identify each form control that is not associated with a label element

2. Check that the control has a title attribute

3. Check that the title attribute identifies the purpose of the control

H71: Providing a description for groups of form controls using fieldset and legend elements

http://www.w3.org/TR/WCAG20-TECHS/H71.html
Description

The objective of this technique is to provide a semantic grouping for related form controls. This allows users to understand the relationship of the controls and interact with the form more quickly and effectively.

Form controls can be grouped by enclosing them with the fieldset element. All controls within a given fieldset are then related. The first element inside the fieldset should be a legend element, which provides a label or instructions for the group. Fieldsets can be nested if desired, although this can lead to confusion if overdone.

Grouping controls is most important for related radio buttons and checkboxes. A set of radio buttons or checkboxes is related when they all submit values for a single named field. They work in the same way as selection lists, allowing the user to choose from a set of options, except selection lists are single controls while radio buttons and checkboxes are multiple controls. Because they are multiple controls, it is particularly important that they be grouped semantically so they can be more easily treated as a single control. Often, user agents will present the value of the legend before the label of each control, to remind users that they are part of the same group.

It can also be useful to group other sets of controls that are not as tightly related as sets of radio buttons and checkboxes. For instance, several fields that collect a user's address might be grouped together with a legend of "Address".

Authors sometimes avoid using the fieldset element because of the default display in the browser, which draws a border around the grouped controls. This visual grouping is also useful and authors should seriously consider retaining it (or some form of visual grouping). The visual effect can be modified in CSS by overriding the "border" property of the fieldset and the "position" property of the legend.

When a small group of related radio buttons includes clear instructions and distinct selections it may not be necessary to use fieldsets and legends; H44: Using label elements to associate text labels with form controls, may also be sufficient.

Example Code:

<form action="http://example.com/vote" method="post">

 <fieldset>

 <legend>Your preferred philosopher</legend>

 <input type="radio" name="philosopher" id="philosopher_socrates" value="socrates"/>

 <label for="philosopher_socrates">Socrates</label>

 <input type="radio" name="philosopher" id="philosopher_plato" value="plato"/>

 <label for="philosopher_plato">Plato</label>

 <input type="radio" name="philosopher" id="philosopher_aristotle" value="aristotle"/>

 <label for="philosopher_aristotle">Aristotle</label>

 </fieldset>

 </form>

Procedure

1. Check that groups of logically related input elements are contained within a fieldset element.

2. Check that any group of input elements of type="radio" or type="checkbox" with the same name attribute is contained within a fieldset element

3. Check that each fieldset has a legend element that includes a description of that group.

H84: Using a button with a select element to perform an action

http://www.w3.org/TR/WCAG20-TECHS/H84.html
Description

The objective of this technique is to allow the user to control when an action is performed, rather than having the action occur as a side effect of choosing a value for the select element. The user may inspect the different values of the select element, or may accidentally choose the wrong value, without causing the action to occur. When the user is satisfied with their choice, they select the button to perform the action.

This is particularly important for users who are choosing the value of the select element via the keyboard, since navigating through the options of the select element changes the value of the control.

Example Code:

<form action="http://somesite.com/action" method="post">

 <label for="action">Options:</label>

 <select name="action" id="action">

 <option value="help">Help</option>

 <option value="reset">Reset</option>

 <option value="submit">Submit</option>

 </select>

 <button type="submit" name="submit" value="submit">Do It </button>

</form>

Procedure

For each select element/button element combination:

1. Check that focus (including keyboard focus) on an option in the select element does not result in any actions

2. Check that selecting the button performs the action associated with the current select value

H85: Using OPTGROUP to group OPTION elements inside a SELECT

http://www.w3.org/TR/WCAG20-TECHS/H85.html
Description

The objective of this technique is to group items in a selection list. A selection list is a set of allowed values for a form control such as a multi-select list or a combo box. Often, selection lists have groups of related options. Those groups should be semantically identified, rather than simply delimiting the groups with "dummy" list entries. This allows user agents to collapse the options by group to support quicker skimming of the options, and to indicate in what group an option of interest is located. It also helps to visually break up long lists so that users can more easily locate the option(s) they are interested in.

In HTML, the select element is used to create both multi-select lists and combo boxes. The various allowed options are each indicated with option elements. To group options together, use the optgroup element, with the related option elements inside that element. Label the group with the "label" attribute so users will know what to expect inside the group.

The optgroup element should be directly inside the select element, and the option elements directly inside the optgroup. It is possible for a select element to contain both single option elements and optgroup groups, though authors should consider if this is in fact the design intent when using this. It is not possible to nest the optgroup element, so only one level of grouping can be done within a select.

Example Code:

<form action="http://example.com/prog/someprog" method="post">

 <label for="food">What is your favorite food?</label>

 <select id="food" name="food">

 <optgroup label="Fruits">

 <option value="1">Apples</option>

 <option value="3">Bananas</option>

 <option value="4">Peaches</option>

 <option value="5">...</option>

 </optgroup>

 <optgroup label="Vegetables">

 <option value="2">Carrots</option>

 <option value="6">Cucumbers</option>

 <option value="7">...</option>

 </optgroup>

 <optgroup label="Baked Goods">

 <option value="8">Apple Pie</option>

 <option value="9">Chocolate Cake</option>

 <option value="10">...</option>

 </optgroup>

 </select>

</form>

Procedure

1. Check the set of options within a selection list to see if there are groups of related options.

2. If there are groups of related options, they should be grouped with optgroup.

H89: Using the title attribute to provide context-sensitive help

http://www.w3.org/TR/WCAG20-TECHS/H89.html
Description

The objective of this technique is to provide context sensitive help for users as they enter data in forms by providing the help information in a title attribute. The help may include format information or examples of input.

Note: Current user agents and assistive technologies do not always provide the information contained in the title attribute to users. Avoid using this technique in isolation until the title attribute has wide-spread support.

Example Code:

<label for="accNum1">Account number: </label>

<input id="accNum1" type="text" size="10" value="" title="Your account number

 can be found in the top right-hand corner of your bill." />

Procedure

1. Identify form controls that require text input.

2. Check that each form control has an explicitly associated label

3. Check that each form control has context-sensitive help provided in the title attribute.

H90: Indicating required form controls

http://www.w3.org/TR/WCAG20-TECHS/H90.html
Description

The objective of this technique is to provide a clear indication that a specific form control in a Web application or form is required for successful data submission. A symbol or text indicating that the control is required is programmatically associated with the field by using the label element, or the legend for groups of controls associated via fieldset. If a symbol is used, the user is advised of its meaning before the first use.

Example Code:

<label for="firstname">First name (required):</label>

<input type="text" name="firstname" id="firstname" />

Example Code:

CSS:

.req {font-size: 150%}

HTML:

<p> Required fields are marked with an asterisk (<abbr class="req" title="required">*</abbr>).</p>

<form action="http://www.test.com" method="post">

<label for="firstname">First name <abbr class="req" title="required">*</abbr>:</label>

<input type="text" name="firstname" id="firstname" />

Procedure

1. For each required form control, check that the required status is indicated in the form control's label or legend.

2. For each indicator of required status that is not provided in text, check that the meaning of the indicator is explained before the form control that uses it.

H91: Using HTML form controls and links

http://www.w3.org/TR/WCAG20-TECHS/H91.html
Description

The objective of this technique is to use standard HTML form controls and link elements to provide keyboard operation and assistive technology interoperability of interactive user interface elements.

User agents provide the keyboard operation of HTML form controls and links. In addition, the user agent maps the form controls and links to an accessibility API. Assistive technologies use the accessibility API to extract appropriate accessibility information, such as role, name, state, and value, and present them to users. The role is provided by the HTML element, and the name is provided by the text associated with that element. Elements for which values and states are appropriate also expose the values and states via multiple mechanisms.

In some cases, the text is already associated with the control through a required attribute. For example, submit buttons use the button element text or image 'alt' attribute as the name. In the case of form controls, label elements or 'title' attributes are used. The following table describes how the role, name, value, and state are determined for HTML link and form controls.

Procedure

1. Inspect the HTML source code.

2. For each instance of links and form elements, check that the name, value, and state are specified as indicated in the table above.

SCR2: Using redundant keyboard and mouse event handlers

http://www.w3.org/TR/WCAG20-TECHS/SCR2.html
Description

The objective of this technique is to demonstrate using device independent events to change a decorative image in response to a mouse or focus event. Use the onmouseover and onmouseout events to change a decorative image when the mouse moves on top of or away from an element on the page. Also, use the onfocus and onblur events to change the image when the element receives and loses focus.

The example below has a decorative image in front of an anchor element. When the user mouses over the anchor tag, the decorative image in front of the anchor is changed. When the mouse moves off of the anchor, the image is changed back to its original version. The same image change effect occurs when the user gives keyboard focus to the anchor element. When focus is received the image changes, when focus is lost the image is changed back. This is accomplished by attaching onmouseover, onmouseout, onfocus and onblur event handlers to the anchor element. The event handler is a JavaScript function called updateImage(), which changes the src attribute of the image. The updateImage() is called in response to the onmouseover, onmouseout, onfocus, and onblur events.

Each image is given a unique id. This unique id is passed to updateImage() along with a boolean value indicating which image is to be used: updateImage(imgId, isOver);. The boolean value of true is passed when the mouse is over the anchor element or it has focus. A false value is passed when the mouse moves off of the anchor element or it loses focus. The updateImage() function uses the image id to load the image and then changes the src attribue based on the boolean value. Note that since the image is for decorative purposes, it has a null alt attribute.

Note: It is best to use images that are similar in size and to specify the height and width attributes on the image element. This will prevent any changes to the layout of the page when the image is updated. This example uses images which are identical in size.

Procedure

Load the Web page and test the events using a mouse and via the keyboard.

1. Check that the "standard" image is displayed as expected when the Web page is loaded.

2. Using the Mouse

a. Move the mouse over the element containing the event handlers (in this example it is an anchor element). Check that the image changes to the expected image.

b. Move the mouse off of the element. Check that the image changes back to the "standard" image.

3. Using the Keyboard

a. Use the keyboard to set focus to the element containing the event handlers. Check that the image changes to the expected image.

b. Use the keyboard to remove focus from the element (generally by moving focus to another element). Check that the image changes to the "standard" image.

4. Verify that the layout of other elements on the page is not affected when the image is changed.

SCR18: Providing client-side validation and alert

http://www.w3.org/TR/WCAG20-TECHS/SCR18.html
Description

The objective of this technique is to validate user input as values are entered for each field, by means of client-side scripting. If errors are found, an alert dialog describes the nature of the error in text. Once the user dismisses the alert dialog, it is helpful if the script positions the keyboard focus on the field where the error occurred.

Example Code:

<label for="date">Date:</label>

<input type="text" name="date" id="date"

onchange="if(isNaN(Date.parse(this.value)))

alert('This control is not a valid date.

Please re-enter the value.');" />

Procedure

For form fields that require specific input:

1. enter invalid data

2. determine if an alert describing the error is provided.

SCR19: Using an onchange event on a select element without causing a change of context

http://www.w3.org/TR/WCAG20-TECHS/SCR19.html
Description

The objective of this technique is to demonstrate how to correctly use an onchange event with a select element to update other elements on the Web page. This technique will not cause a change of context. When there are one or more select elements on the Web page, an onchange event on one, can update the options in another select element on the Web page. All of the data required by the select elements is included within the Web page.

It is important to note that the select item which is modified is after the trigger select element in the reading order of the Web page. This ensures that assistive technologies will pick up the change and users will encounter the new data when the modified element receives focus. This technique relies on JavaScript support in the user agent.

Procedure

1. Navigate to the trigger select element (in this example, the one to select continents) and change the value of the select.

2. Navigate to the select element that is updated by the trigger (in this example, the one to select countries).

3. Check that the matching option values are displayed in the other select element.

4. Navigate to the trigger select element, navigate through the options but do not change the value.

5. Check that the matching option values are still displayed in the associated element.

It is recommended that the select elements are tested with an assistive technology to verify that the changes to the associated element are recognized.

SCR20: Using both keyboard and other device-specific functions

http://www.w3.org/TR/WCAG20-TECHS/SCR20.html
Description

The objective of this technique is to illustrate the use of both keyboard-specific and mouse-specific events with code that has a scripting function associated with an event. Using both keyboard-specific and mouse-specific events together ensures that content can be operated by a wide range of devices. For example, a script may perform the same action when a keypress is detected that is performed when a mouse button is clicked. This technique goes beyond the Success Criterion requirement for keyboard access by including not only keyboard access but access using other devices as well.

In JavaScript, commonly used event handlers include, onblur, onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup, onload, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onreset, onselect, onsubmit, onunload. Some mouse-specific functions have a logical corresponding keyboard-specific function (such as 'onmouseover' and 'onfocus'). The keyboard event handler should be provided, that executes the same function as the mouse event handler.

Procedure

1. Find all interactive functionality

2. Check that all interactive functionality can be accessed using the keyboard alone

SCR32: Providing client-side validation and adding error text via the DOM

http://www.w3.org/TR/WCAG20-TECHS/SCR32.html
Description

The objective of this technique is to demonstrate the display of an error message when client side validation of a form field has failed. Anchor elements are used to display the error messages in a list and are inserted above the fields to be validated. Anchor elements are used in the error messages so that focus can be placed on the error message(s), drawing the user's attention to it. The href of the anchor elements contain an in-page link which references the fields where error(s) have been found.

In a deployed application, if Javascript is turned off, client side validation will not occur. Therefore, this technique would only be sufficient in situations where scripting is relied upon for conformance or when server side validation techniques are also used to catch any errors and return the page with information about the fields with errors.

Example 1

[image: image5.jpg]Validating Form
2 Errors in Submission|
Please review the following

1. Please enter vour age
2. Please enter your email address

Personal Details

Please enter your forename |

Please enteryourage| |

Procedure

Create error messages using anchor tags and appropriate scripting via the technique above.

1. Load the page.

2. Enter a valid value in the field(s) associated with an error message and verify that no error messages are displayed.

3. Enter an invalid value in the field(s) associated with an error message and verify that the correct error message for the field is displayed.

4. Verify that the error messages receive focus.

5. Enter a valid value in the field(s) associated with the displayed error message and verify that the error message is removed.

6. Repeat for all fields with associated error messages created via anchor tags.

Note: It is recommended that you also run the above procedure using an assistive technology.

Expected Results

· Checks #2, #3, #4, and #5 are all true.

SCR35: Making actions keyboard accessible by using the onclick event of anchors and buttons

http://www.w3.org/TR/WCAG20-TECHS/SCR35.html
Description

The objective of this technique is to demonstrate how to invoke a scripting function in a way that is keyboard accessible by attaching it to a keyboard-accessible control. In order to ensure that scripted actions can be invoked from the keyboard, they are associated with "natively actionable" HTML elements (links and buttons). The onclick event of these elements is device independent. While "onclick" sounds like it is tied to the mouse, the onclick event is actually mapped to the default action of a link or button. The default action occurs when the user clicks the element with a mouse, but it also occurs when the user focuses the element and hits enter or space, and when the element is triggered via the accessibility API.

Although this technique relies on client-side scripting, it is beneficial to provide a backup implementation or explanation for environments in which scripting is not available. When using anchor elements to invoke a JavaScript action, a backup implementation or explanation is provided via the href attribute. When using buttons, it is provided via a form post.

Example Code:

<script>

 function doStuff()

 {

 //do stuff

 return false;

 }

</script>

<input type="image" src="stuff.gif" title="Do stuff" onclick="return doStuff();" />

Procedure

For all script actions associated with a, button, or input elements:

1. In a user agent that supports Scripting

· Click on the control with the mouse.

· Check that the scripting action executes properly.

· If the control is an anchor element, check that the URI in the href attribute of the anchor element is not invoked.

· Check that it is possible to navigate to and give focus to the control via the keyboard.

· Set keyboard focus to the control.

· Check that pressing ENTER invokes the scripting action.

· If the control is an anchor element, check that the URI in the href attribute of the anchor element is not invoked.

2. In a user agent that does not support Scripting

· Click on the control with the mouse.

· If the control is an anchor element, check that the URI in the href attribute of the anchor element is invoked.

· Check that it is possible to navigate to and give focus to the control via the keyboard.

· Set keyboard focus to the control.

· If the control is an anchor element, check that pressing ENTER invokes the URI of the anchor element's href attribute.

F9: Failure of Success Criterion 3.2.5 due to changing the context when the user removes focus from a form element

http://www.w3.org/TR/WCAG20-TECHS/F9.html
Description

This document describes a failure that occurs when removing focus from a form element, such as by moving to the next element, causes a change of context.

Procedure

1. Find all form elements.

2. Go through them in order.

3. Check if the form submits when you move from one field to the next.

4. Check if moving from one field to the next launches any new windows.

5. Check if moving from one filed to the next navigates to another screen.

Expected Results

· If step #3, step #4, or step #5 is true, then this failure condition applies and the content fails the Success Criterion.

F36: Failure of Success Criterion 3.2.2 due to automatically submitting a form and presenting new content without prior warning when the last field in the form is given a value

http://www.w3.org/TR/WCAG20-TECHS/F36.html
Description

Forms are frequently designed so that they submit automatically when the user has filled in all the fields, or when focus leaves the last field. There are two problems with this approach. First is that a disabled user who needs more context may move focus away from the field to the directions on how to fill in the form, or to other text, accidentally submitting the form. The other is that, with some form elements, the value of the field changes as each item is navigated with the keyboard, again accidentally submitting the form. It is better to rely on the standard form behavior of the submit button and enter key.

Procedure

1. Enter data in all fields on page starting at top.

2. Enter data in last field and exit from it (tab out of it).

3. Check whether leaving the last field causes change of context.

Expected Results

· If step #3 is true, then this failure condition applies and content fails the Success Criterion.

F81: Failure of Success Criterion 1.4.1 due to identifying required or error fields using color differences only

http://www.w3.org/TR/WCAG20-TECHS/F81.html
Description

This objective of this technique is to describe the failure that occurs when a required field or an error field is marked with color differences only, without an alternate way to identify the required field or error field. This can cause problems for people who are blind or colorblind, because they may not be able to perceive the color differences that indicate which field is required or which field is causing an error.

Procedure

For all required fields or error fields in the Web page that are identified using color differences:

1. Check that an non-color way to identify the required field or error field is provided.

Expected Results

· If step #1 is false, then this failure condition applies and content fails the Success Criterion.

F86: Failure of Success Criterion 4.1.2 due to not providing names for each part of a multi-part form field, such as a US telephone number

http://www.w3.org/TR/WCAG20-TECHS/F86.html
Description

This describes a failure condition of Success Criterion 4.1.2 where some or all of the parts of multi-part form field do not have names. Often there is a label for the multi-part field, which is either programatically associated with the first part, or not programatically associated with any parts.

Note: A name does not necessarily have to be visible, but is visible to assistive technologies.

Failure Example 3

The same US telephone number. In this case, the label is programatically associated with the first part.

Example Code:

<label for="area">Phone number:</label>

(<input id="area" type="text" size="3">) <input type="text" size="3">-<input type="text" size="4">

A user with assistive technology will be led to believe that the first field is for the entire phone number, and will experience the second and third fields as undefined text fields.

Procedure

General Procedure:

1. Install a tool that allows you to view the accessibility API for your platform (see Resources section)

2. Find each form control

3. Check that the name property for each control is populated

Alternative Procedure for HTML and XHTML:

1. Find each input, select, and textarea element in the HTML source

2. Check that there is a title attribute on the element

3. Check that there is an associated label element

Expected Results

General Procedure:

· If check #3 is false, then the failure condition applies and the content fails this success criterion.

Alternative Procedure for HTML and XHTML:

· If checks #2 and #3 are false, then the failure condition applies and the content fails the success criterion.

C17: Scaling form elements which contain text

http://www.w3.org/TR/WCAG20-TECHS/C17.html
Description

The objective of this technique is to ensure text-based form controls resize when text size is changed in the user agent. This will allow users to enter text and read what they have entered in input boxes because the text is displayed at the size required by the user.

Text-based form controls include input boxes (text and textarea) as well as buttons.

Procedure

1. Enter some text into text-based form controls that receive user entered text.

2. Increase the text size of the content by 200%.

3. Check that the text in text-based form controls has increased by 200%.

ARIA2: Identifying required fields with the "required" property

http://www.w3.org/TR/WCAG20-TECHS/ARIA2.html
Description

The objective of this technique is to indicate that the completion of a user input field is mandatory in a programmatically determinable way. The WAI-ARIA required state indicates that user input is required before submission. The "required" state can have values of "true" or "false". For example, if a user must fill in an address field, then "required" is set to true.

Note: The fact that the element is required is often visually presented (such as a sign or symbol after the control). Using the "required" property makes it much easier for user agents to pass on this important information to the user in a user agent-specific manner.

WAI-ARIA States and Properties is a module supported in XHTML 1.1 and higher, and the specification documents how to provide the properties in XHTML and other XML-based languages. Refer to Embedding Accessibility Role and State Metadata in HTML Documents for information on how to provide WAI-ARIA States and Properties with HTML and XHTML 1.0. WAI-ARIA States and Properties is compatible with other languages as well; refer to documentation in those languages.

Note: at this time, WAI-ARIA is a Working Draft. This technique is provided as an advisory technique for organizations that wish to experiment with achieving WCAG conformance using WAI-ARIA. When WAI-ARIA becomes a formal specification and is supported in user agents, this technique is anticipated to become a sufficient technique.

Example Code:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1

 For Accessible Adaptable Applications//EN"

 "http://www.w3.org/2005/07/aaa/xhtml11-aaa.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:aaa="http://www.w3.org/2005/07/aaa"

 xml:lang="en">

 <head>

 <title>Required Input</title>

 </head>

 <body>

 <h1>Required Input</h1>

 <p>The following form input field must be completed by the user

 before the form can be submitted.</p>

 <form action="http://example.com/submit">

 <p>

 <label for="test">Test (required)</label>

 <input name="test" id="test" aaa:required="true" />

 </p>

 <p>

 <input type="submit" value="Submit" />

 </p>

 </form>

 </body>

</html>

Procedure

1. Access a page with mandatory form fields in a user agent that supports the Accessible Rich Internet Applications specification.

2. Leaving mandatory form fields empty, attempt to submit the form.

3. Check that that the user agent notifies of the missing information.

4. Provide values for the mandatory fields.

5. Check that the user agent allows form submission to proceed.

Expected Results

· #3 and #5 are true

ARIA3: Identifying valid range information with the "valuemin" and "valuemax" properties

http://www.w3.org/TR/WCAG20-TECHS/ARIA3.html
Description

The objective of this technique is to provide information about the allowable range of an entry field in a programmatically determinable way. The WAI-ARIA valuemin and valuemax states provide the minimum and maximum (respectively) values that may be provided by the user. User agents will not permit users to enter values outside that range, or will generate a validation error if users do so.

WAI-ARIA States and Properties is a module supported in XHTML 1.1 and higher, and the specification documents how to provide the properties in XHTML and other XML-based languages. Refer to Embedding Accessibility Role and State Metadata in HTML Documents for information on how to provide WAI-ARIA States and Properties with HTML and XHTML 1.0. ARIA States and Properties is compatible with other languages as well; refer to documentation in those languages.

Note: at this time, WAI-ARIA is a Working Draft. This technique is provided as an advisory technique for organizations that wish to experiment with achieving WCAG conformance using WAI-ARIA. When WAI-ARIA becomes a formal specification and is supported in user agents, this technique is anticipated to become a sufficient technique.

Example Code:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1

 For Accessible Adaptable Applications//EN" "http://www.w3.org/2005/07/aaa/xhtml11-aaa.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:wairole="http://www.w3.org/2005/01/wai-rdf/GUIRoleTaxonomy#"

 xmlns:aaa="http://www.w3.org/2005/07/aaa"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema-datatypes"

 xml:lang="en">

<head>

 <title>Spin Button</title>

</head>

<body>

 <h1>Spin Button</h1>

 <p>Spin button allows users to enter a number between 1 and 100. It is

 implemented as a text input, to which user agents that do not support

 ARIA roles fall back.</p>

 <form action="http://example.com/submit">

 <p><label for="test">Enter a number between 1 and 100</label>

 <input name="test" id="test" role="wairole:spinbutton"

 aaa:valuemin="1" aaa:valuemax="100" aaa:datatype="xsd:integer" /></p>

 <p><input type="submit" value="Submit" /></p>

 </form>

</body>

</html>

Procedure

1. Access a page with form fields that require data in a certain range, using a user agent that supports the Accessible Rich Internet Applications specification.

2. Provide information that is outside the allowable range, and attempt to submit the form.

3. Check that the user agent notifies of the invalid data.

4. Provide information that is inside the allowable range, and attempt to submit the form.

5. Check that the user agent accepts the data and allows the submit to proceed.

Expected Results

· #3 and #5 are true

ARIA4: Using Accessible Rich Internet Applications to programmatically identify form fields as required

http://www.w3.org/TR/WCAG20-TECHS/ARIA4.html
Description

The purpose of this technique is to demonstrate how to use Accessible Rich Internet Applications to programmatically identify form components for which user input or selection are required. Accessible Rich Internet Applications techniques provide the ability to add additional information about elements which can be programmatically determined. The user agent can provide this additional information to assistive technology for presentation to the user.

Procedure

1. Load the page using an user agent and/or assistive technology that supports Accessible Rich Internet Applications.

2. Navigate to each required form element and verify that "required" is spoken.

Técnicas WCAG 2.0 asociadas a la implementación de formularios accesibles

